Exercise 23

Given functions $p(x)=\frac{1}{\sqrt{x}}$ and $m(x)=x^{2}-4$, state the domain of each of the following functions using interval notation:
(a) $\frac{p(x)}{m(x)}$
(b) $p(m(x))$
(c) $m(p(x))$

Solution

Part (a)

Compute the function $p(x) / m(x)$.

$$
\begin{aligned}
\frac{p(x)}{m(x)} & =\frac{\frac{1}{\sqrt{x}}}{x^{2}-4} \\
& =\frac{1}{\sqrt{x}\left(x^{2}-4\right)}
\end{aligned}
$$

It's impossible to divide by zero, and it's impossible to take the square root of a negative number.

$$
\begin{gathered}
x \geq 0 \quad \text { and } \sqrt{x}\left(x^{2}-4\right) \neq 0 \\
x \geq 0 \quad \text { and } \quad\left(\sqrt{x} \neq 0 \quad \text { or } \quad x^{2}-4 \neq 0\right) \\
x \geq 0 \text { and }[x \neq 0 \text { or }(x+2)(x-2) \neq 0] \\
x \geq 0 \text { and }(x \neq 0 \text { or } x+2 \neq 0 \text { or } x-2 \neq 0) \\
x \geq 0 \text { and }(x \neq 0 \text { or } x \neq-2 \text { or } x \neq 2) .
\end{gathered}
$$

Therefore, the domain of $p(x) / m(x)$ in interval notation is $(0,2) \cup(2, \infty)$.

Part (b)

Compute $p(m(x))$ by plugging the formula for $m(x)$ where x is in the formula for $p(x)$.

$$
p(m(x))=\frac{1}{\sqrt{x^{2}-4}}
$$

It's impossible to divide by zero, and it's impossible to take the square root of a negative number.

$$
\begin{gathered}
x^{2}-4 \geq 0 \quad \text { and } \quad \sqrt{x^{2}-4} \neq 0 \\
(x+2)(x-2) \geq 0 \quad \text { and } \quad x^{2}-4 \neq 0 \\
(x+2)(x-2) \geq 0 \quad \text { and } \quad x^{2} \neq 4 \\
(x+2)(x-2) \geq 0 \quad \text { and } \quad x \neq \pm 2
\end{gathered}
$$

For the inequality on the left, the critical points are -2 and 2 . Partition the number line at these numbers and test where the inequality is true.

Therefore, the domain of $p(m(x))$ in interval notation is $(-\infty,-2) \cup(2, \infty)$.

Part (c)

Compute $m(p(x))$ by plugging the formula for $p(x)$ where x is in the formula for $m(x)$.

$$
m(p(x))=\left(\frac{1}{\sqrt{x}}\right)^{2}-4=\frac{1}{x}-4
$$

It's impossible to divide by zero, and it's impossible to take the square root of a negative number.

$$
x \geq 0 \quad \text { and } \quad x \neq 0
$$

Combine the two conditions.

$$
x>0
$$

Therefore, the domain of $m(p(x))$ in interval notation is $(0, \infty)$.

